If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18z^2-31z+12=2z^2
We move all terms to the left:
18z^2-31z+12-(2z^2)=0
determiningTheFunctionDomain 18z^2-2z^2-31z+12=0
We add all the numbers together, and all the variables
16z^2-31z+12=0
a = 16; b = -31; c = +12;
Δ = b2-4ac
Δ = -312-4·16·12
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-\sqrt{193}}{2*16}=\frac{31-\sqrt{193}}{32} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+\sqrt{193}}{2*16}=\frac{31+\sqrt{193}}{32} $
| 120-x=40+x | | 18z2−31z+12= −2z2−2z | | V.69=3v | | 9x^2-5=-126 | | 3x+5=3x-50 | | 54=4x-18 | | 0.7(x+3)=2 | | 3x+5=3x-3x | | 4x+2=-3x4 | | 3x+5=3x-17 | | 3x+5=3x-16 | | z+z+5z-3z=40 | | Qd,d=3 | | 4x-32=5x+20 | | 43-4n=128 | | 16n2−10n−5= 6n6n | | Qd,Idd=3 | | ⅘n=8 | | -x2+90=0 | | m+5m+9m=21 | | -12x+14=-10x-8 | | -12x+14=-10-8 | | 4(x+2)-4(x-4)=32 | | 3a^2−6a−34=0 | | 3a2−6a−34=0 | | -2x2+80=0 | | 2/3q+5=2q+13 | | 5^(2x+1)+5=26*(5^(x)) | | 5^(2x+1)+5-(26(5^(x))=0 | | x+3x+6x=54 | | 5^(2x+1)+5=26*(5^(x-1) | | -3d=10+7d |